Endothelial cells metabolically regulate breast cancer invasion toward a microvessel

Author:

Tan Matthew L.1ORCID,Jenkins-Johnston Niaa1ORCID,Huang Sarah2ORCID,Schutrum Brittany1ORCID,Vadhin Sandra2ORCID,Adhikari Abhinav2ORCID,Williams Rebecca M.1ORCID,Zipfel Warren R.1ORCID,Lammerding Jan1ORCID,Varner Jeffrey D.2ORCID,Fischbach Claudia13ORCID

Affiliation:

1. Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University 1 , Ithaca, New York 14853, USA

2. Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University 2 , Ithaca, New York 14853, USA

3. Kavli Institute at Cornell for Nanoscale Science, Cornell University 3 , Ithaca, New York 14853, USA

Abstract

Breast cancer metastasis is initiated by invasion of tumor cells into the collagen type I-rich stroma to reach adjacent blood vessels. Prior work has identified that metabolic plasticity is a key requirement of tumor cell invasion into collagen. However, it remains largely unclear how blood vessels affect this relationship. Here, we developed a microfluidic platform to analyze how tumor cells invade collagen in the presence and absence of a microvascular channel. We demonstrate that endothelial cells secrete pro-migratory factors that direct tumor cell invasion toward the microvessel. Analysis of tumor cell metabolism using metabolic imaging, metabolomics, and computational flux balance analysis revealed that these changes are accompanied by increased rates of glycolysis and oxygen consumption caused by broad alterations of glucose metabolism. Indeed, restricting glucose availability decreased endothelial cell-induced tumor cell invasion. Our results suggest that endothelial cells promote tumor invasion into the stroma due, in part, to reprogramming tumor cell metabolism.

Funder

National Cancer Institute

U.S. Department of Education

National Science Foundation

Cornell University Engineering Learning Initiative

Breast Cancer Coalition of Rochester

Publisher

AIP Publishing

Subject

Biomedical Engineering,Biomaterials,Biophysics,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3