Monolithic integrated superconducting nanowire digital encoder

Author:

Huang Yang-Hui1,Zhao Qing-Yuan12ORCID,Hao Hao1,Liu Nai-Tao1,Liu Zhen1,Deng Jie1,Yang Fan1,Ru Sai-Ying1,Tu Xue-Cou13ORCID,Zhang La-Bao13ORCID,Jia Xiao-Qing13ORCID,Chen Jian12ORCID,Kang Lin13ORCID,Wu Pei-Heng13ORCID

Affiliation:

1. Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University 1 , Nanjing, Jiangsu 210023, China

2. Purple Mountain Laboratories 2 , Nanjing, Jiangsu 211111, China

3. Hefei National Laboratory 3 , Hefei, Anhui 230088, China

Abstract

Superconducting digital circuits are promising technologies that can overcome bottlenecks in both classical and quantum computation due to their ultra-high operation speed and extremely low power dissipation. Superconducting nanowire cryotrons (nTrons) are emerging as one type of superconductor switching devices, offering advantages complementary to conventional Josephson junctions. Achieving monolithic integration of a reasonable number of nTrons into a functional digital circuit is a crucial step to extend its application. In this study, we constructed a monolithic integrated nTron-based binary encoder, which includes input fanout circuits, on-chip biasing, combinational logic routing and multi-gate nTrons. This represents a monolithic nTron digital circuit comprising 137 nTron gates, 424 resistors, 274 inductors, and 164 vias developed using a two-superconducting-layer fabrication process. The performance of this monolithic nTron encoder surpasses that of our previously demonstrated circuit with discrete nTron components. The maximum bias margin is 28% for the fanout circuit and 60% for the multi-gate nTron when using a signal generator, while the minimum timing jitter is 40 ps. The total power dissipation mainly from biasing resistors is 19.6 μW, making it more power efficient than RSFQ encoders. The encoder is then packaged and connected with a superconducting nanowire single-photon detector array for demonstrating its function of addressing pixel locations. Compared to the conventional readout, the nTron encoder shows a minimum readout error rate lower than 10−4 and reduces the readout RF lines from 15 to 4. The design and fabrication technologies could enrich integrated nTron digital circuits beyond current limits and promote their applications in classical and quantum systems.

Funder

National Natural Science Foundation

Natural Science Foundation of Jiangsu Province

innovation program for quantum science and technology

the fundamental research for the central universities

the Jiangsu Provincial Key Laboratory of Advanced Manipulating Technique of Electromagnetic Waves

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3