Silent elongation of polyrotaxane and its composites

Author:

Iida Masaki12ORCID,Ito Tsuyohito1ORCID,Muneoka Hitoshi1ORCID,Shimizu Yoshiki2ORCID,Hakuta Yukiya2,Ito Kohzo1,Terashima Kazuo12ORCID

Affiliation:

1. Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo 1 , 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan

2. AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST) 2 , 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan

Abstract

Polyrotaxanes (PR) have attracted great interest due to their unique mechanical properties, exhibiting the pulley effect, via their slide-ring topological structure. Flexible and functional composite materials consisting of PR and inorganic particles, particularly those with plasma-surface modifications, have also shown higher toughness, even with large amounts of inorganic particles present. In this study, we verified the effect of neat PR and its composites with graphene nanoplates or carbon nanofibers by measuring acoustic emission (AE). Simultaneous AE and tensile measurements were tested several times for each sample, and AE signals during elongation were acquired. It revealed that the conventional fixed cross-linked elastomer materials showed AE signals in the entire tensile region, while the movable-cross-linked materials of PR showed almost no AE signal counts. This suggests that neat PR had almost no microscopic fracture before final breakage via the pulley effect. PR composites with plasma-surface-modified fillers showed a lower number of AE signals than that with unmodified fillers. This might be due to the surface modification of fillers, which improved filler dispersibility and/or prevented a large drop in the mobility of cross-linking points.

Funder

KAKENHI

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3