Identification of flow structures in a closed chamber in the presence of a needle plasma actuator

Author:

Mehdi Ghazanfar1ORCID,Bonuso Sara1ORCID,De Giorgi Maria Grazia1ORCID

Affiliation:

1. Department of Engineering for Innovation, University of Salento, Via Per Monteroni, 73100 Lecce, Italy

Abstract

This study deals with the experimental characterization of the induced flow dynamics by a disk-needle-type plasma actuator driven by a sinusoidal generator and located in a rectangular cross-section burner. Flow characterization was performed using different plasma actuation conditions and standoff distances. Experiments were conducted under non-reactive flow conditions. Electrical characterization was carried out. Airflow behavior was also analyzed using smoke flow visualization. Smoke flow visualization showed the dynamic behavior of the plasma-induced flow. Post-processing of high-quality images was performed by using Proper Orthogonal Decomposition (POD) technique to recognize the dominant flow vortexes and coherent structures. This could support the design of plasma actuation devices in real combustors and be useful for the implementation of numerical models. Moreover, it has been concluded that flow dynamics can be controlled by a variation of the plasma power or the gap distance between two electrodes. Laser Droplet Velocimetry (LDV) was used to investigate the distribution of flow velocities and turbulent kinetic energy (TKE) at different plasma power values of the sinusoidal alternating current generator and standoff distances. From POD and LDV analyses, it has been observed that there is quite a linear relation between the POD energy of the first mode and the maximum TKE. The POD method could be used to identify motions in the flow field carrying the most TKE. TKE peaks are present in the area with the most energetic flow structures, as identified by the POD.

Funder

Cleansky

Ministero dell'Istruzione, dell'Università e della Ricerca

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3