Numerical simulation of wave propagation in ice-covered ocean environments based on the equivalent-source method

Author:

Abstract

Accurate modeling of sound propagation in ice-covered ocean environments can help with interpreting discrepancies between predictions and experimental observations in the changing Arctic Ocean; this is advantageous for environmental conservation, resource exploration, and naval applications. Building on the recent development of the equivalent-source (ES) method (ESM), herein, an ESM-based sub-ice model (ESM-SUBICE) is presented for wave propagation in an ice-covered ocean acoustic environment. The presented model solves exact governing equations for acoustic–elastic propagation in an ice-covered waveguide by expressing the wave solution in terms of a field superposition produced by several sets of ESs. Their unknown amplitudes are solved by strictly enforcing additional ice-layer boundary conditions. ESM-SUBICE achieves high efficiency using a water–seabed Green's function to automatically satisfy the boundary conditions at this interface. By further dividing the ocean environment into layers, ESM-SUBICE is extended for more general situations including stratified sound-speed structures and seabed range dependencies. ESM-SUBICE is benchmarked against a finite-element model, and it is found to produce high-quality solutions with high efficiency. Transmission-loss predictions for elastic, fluid, and free-surface ice representations in different ocean environments are compared to examine the effect of ice elasticity on propagation and scattering. The results suggest that the fluid representation is adequate for deep-water environments where the seabed is soft and the surface duct effect is insignificant; otherwise, for accurate predictions, the ice elasticity should be considered.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3