Experimental study and kinetic modeling of methanol conversion to propylene with co-feeding of C4 and C5/C6 hydrocarbon cuts over a ZSM-5 catalyst

Author:

Alaei S. Hadi1ORCID,Khorasheh Farhad1ORCID,Jafari Nasr M. Reza2,Arjmand Mehdi1

Affiliation:

1. Department of Chemical Engineering, South Tehran Branch, Azad Islamic University 1 , Tehran, Iran

2. Research Institute of Petroleum Industry 2 , Tehran, Iran

Abstract

Extensive experimental data were used to develop a comprehensive kinetic model for the methanol to propylene (MTP) process over a ZSM-5 catalyst. Preliminary experiments were performed to determine the reaction conditions that would ensure the absence of external (film) and internal mass transfer resistances. The kinetic experiments were subsequently carried out at 420–500 °C under conditions where mass transfer limitations were absent. A detailed reaction network was proposed for the MTP process based on the experimental product distribution and various reported kinetic models in the literature. According to the first series of experiments (without C4 and C5/C6 recycle streams) conducted at various temperatures, the best yield for propylene production was achieved at 480 °C with a water to methanol ratio of 0.7. Subsequently, kinetic experiments were performed at 480 °C and a water to methanol ratio of 0.7 using feeds with different amounts of C4 and C5/C6 hydrocarbons as recycle streams. Species material balances for the integral tubular reactor along with power-law rate functions and the Arrhenius equation for rate constants were employed in an optimization algorithm to obtain the kinetic parameters. The predictive ability of the model was checked against experimental data, and the kinetic parameters were validated by additional experiments.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3