The hidden complexity of a double-scroll attractor: Analytic proofs from a piecewise-smooth system

Author:

Belykh Vladimir N.12ORCID,Barabash Nikita V.12ORCID,Belykh Igor3ORCID

Affiliation:

1. Department of Mathematics, Volga State University of Water Transport 1 , 5A, Nesterov str., Nizhny Novgorod 603950, Russia

2. Department of Control Theory, Lobachevsky State University of Nizhny Novgorod 2 , 23, Gagarin Ave., 603950 Nizhny Novgorod, Russia

3. Department of Mathematics and Statistics, Georgia State University 3 , P.O. Box 4110, Atlanta, Georgia 30302-410, USA

Abstract

Double-scroll attractors are one of the pillars of modern chaos theory. However, rigorous computer-free analysis of their existence and global structure is often elusive. Here, we address this fundamental problem by constructing an analytically tractable piecewise-smooth system with a double-scroll attractor. We derive a Poincaré return map to prove the existence of the double-scroll attractor and explicitly characterize its global dynamical properties. In particular, we reveal a hidden set of countably many saddle orbits associated with infinite-period Smale horseshoes. These complex hyperbolic sets emerge from an ordered iterative process that yields sequential intersections between different horseshoes and their preimages. This novel distinctive feature differs from the classical Smale horseshoes, directly intersecting with their own preimages. Our global analysis suggests that the structure of the classical Chua attractor and other figure-eight attractors might be more complex than previously thought.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Directorate for Mathematical and Physical Sciences

Ministry of Science and Higher Education of the Russian Federation

Russian Science Foundation

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3