The enhanced vertical piezoelectricity in Janus C3HFX (X = Si and Ge) monolayers based on the born effective charges dipole-moment

Author:

Shang Xiao1ORCID,Tang Dai-Song1ORCID,He Qi-Wen1ORCID,Zhang He-Na1ORCID,Liu Fu-Chun1ORCID,Wang Xiao-Chun2ORCID

Affiliation:

1. Institute of Atomic and Molecular Physics, Jilin University 1 , Changchun 130012, The People's Republic of China

2. School of Physics Science and Information Technology, Liaocheng University 2 , Liaocheng 252000, The People's Republic of China

Abstract

Recently, two-dimensional (2D) piezoelectric materials are widely studied, and the vertical piezoelectric properties of 2D materials are highly required to be known in the related theory research works and experiments, so it becomes very important to explore the intrinsic mechanism of piezoelectricity in the 2D materials. Herein, we systematically study the piezoelectricity of Janus C3HFX (X = Si and Ge) monolayers with semiconductor property, which are carbon-based 2D materials, using the first-principles calculation. The remarkable enhancements on the absolute values of the vertical piezoelectric coefficient of C3HFSi-1 (e33 = 11.27 × 10−10 C/m) and C3HFGe-4 (e33 = −12.78 × 10−10 C/m) are larger than that of C4HF (e33 = −2.28 × 10−10 C/m) by 5 and 6 times, respectively. It indicates that the atom replacement at appropriate positions in the multiatomic monolayer can significantly enhance the vertical piezoelectric properties based on the appropriate distribution of polarization charge. We define the concepts, the Born effective charges center (BECs-center) and the BECs-dipole-moment in this work, to explain these large vertical piezoelectric coefficients’ variation. The larger BECs-dipole-moment will enhance the vertical piezoelectricity for these C3HFX monolayers than that of the C4HF monolayer. These concepts defined in this work will deepen the understanding of the internal physical mechanism about the piezoelectricity.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3