Acoustofluidic separation of proteins from platelets in human blood plasma using aptamer-functionalized microparticles

Author:

Lee Song Ha1,Cha Beomseok1ORCID,Ko Jeongu1,Afzal Muhammad2,Park Jinsoo1ORCID

Affiliation:

1. Department of Mechanical Engineering, Chonnam National University 1 , 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea

2. Center of Immunology Marseille-Luminy, Aix-Marseille University 2 , 171 Av, De Luminy, 13009 Marseille, France

Abstract

Microfluidic liquid biopsy has emerged as a promising clinical assay for early diagnosis. Herein, we propose acoustofluidic separation of biomarker proteins from platelets in plasma using aptamer-functionalized microparticles. As model proteins, C-reactive protein and thrombin were spiked in human platelet-rich plasma. The target proteins were selectively conjugated with their corresponding aptamer-functionalized microparticles of different sizes, and the particle complexes served as a mobile carrier for the conjugated proteins. The proposed acoustofluidic device was composed of an interdigital transducer (IDT) patterned on a piezoelectric substrate and a disposable polydimethylsiloxane (PDMS) microfluidic chip. The PDMS chip was placed in a tilted arrangement with the IDT to utilize both vertical and horizontal components of surface acoustic wave-induced acoustic radiation force (ARF) for multiplexed assay at high-throughput. The two different-sized particles experienced the ARF at different magnitudes and were separated from platelets in plasma. The IDT on the piezoelectric substrate could be reusable, while the microfluidic chip can be replaceable for repeated assays. The sample processing throughput with the separation efficiency >95% has been improved such that the volumetric flow rate and flow velocity were 1.6 ml/h and 37 mm/s, respectively. For the prevention of platelet activation and protein adsorption to the microchannel, polyethylene oxide solution was introduced as sheath flows and coating on to the walls. We conducted scanning electron microscopy, x-ray photoemission spectroscopy , and sodium dodecyl sulfate- analysis before and after the separation to confirm the protein capture and separation. We expect that the proposed approach will provide new prospects for particle-based liquid biopsy using blood.

Funder

National Research Foundation of Korea

National NanoFab Center

Publisher

AIP Publishing

Subject

Condensed Matter Physics,General Materials Science,Fluid Flow and Transfer Processes,Colloid and Surface Chemistry,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3