Nature of the metallic and in-gap states in Ni-doped SrTiO3

Author:

Alarab Fatima1ORCID,Hricovini Karol2ORCID,Leikert Berengar3ORCID,Richter Christine2ORCID,Schmitt Thorsten1,Sing Michael3ORCID,Claessen Ralph3ORCID,Minár Ján4ORCID,Strocov Vladimir N.1ORCID

Affiliation:

1. Swiss Light Source, Paul Scherrer Institute 1 , 5232 Villigen-PSI, Switzerland

2. 2 Université Paris-Saclay and CY Cergy Paris Université, CEA, LIDYL, 91191 Gif-sur-Yvette, France

3. Physikalisches Institut and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius–Maximilians-Universität 3 , 97074 Würzburg, Germany

4. New Technologies Research Centre, University of West Bohemia 4 , 301 00, Plzeň, Czech Republic

Abstract

Epitaxial thin films of SrTiO3(100) doped with 6% and 12% Ni are studied with resonant angle-resolved photoelectron spectroscopy at the Ti and Ni L2,3-edges. We find that the Ni doping shifts the valence band of n-doped pristine SrTiO3 toward the Fermi level (in the direction of p-doping) and reducing the bandgap. In the Ti t2g-derived mobile electron system (MES), the Ni doping depopulates the out-of-plane dxz/yz-derived bands, transforming the MES to two-dimensional and progressively reduces the electron density embedded in the in-plane dxy-derived bands as reflected in their Fermi momentum. Furthermore, the Ti and Ni L2,3-edge resonant photoemission is used to identify the Ni 3d impurity state in the vicinity of the valence-band maximum and decipher the full spectrum of the in-gap states originating from the Ni atoms, Ti atoms, and from their hybridized orbitals. Our experimental information about the dependence of the valence bands, MES, and in-gap states in Ni-doped SrTiO3 may help the development of this material toward its device applications associated with the reduced optical bandgap.

Funder

Swiss National Foundation

ERDF as a Part of MSMT

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3