Affiliation:
1. Chemistry Department, Queen’s University , Kingston, Ontario K7L 3N6, Canada
Abstract
In this paper, we use the previously introduced Canonical Polyadic (CP)-Multiple Shift Block Inverse Iteration (MSBII) eigensolver [S. D. Kallullathil and T. Carrington, J. Chem. Phys. 155, 234105 (2021)] in conjunction with a contraction tree to compute vibrational spectra. The CP-MSBII eigensolver uses the CP format. The memory cost scales linearly with the number of coordinates. A tensor in CP format represents a wavefunction constrained to be a sum of products (SOP). An SOP wavefunction can be made more accurate by increasing the number of terms, the rank. When the required rank is large, the runtime of a calculation in CP format is long, although the memory cost is small. To make the method more efficient, we break the full problem into pieces using a contraction tree. The required rank for each of the sub-problems is small. To demonstrate the effectiveness of the ideas, we computed vibrational energy levels of acetonitrile (12-D) and ethylene oxide (15-D).
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献