Interpreting machine learning models using model-agnostic approach
Author:
Publisher
AIP Publishing
Link
http://aip.scitation.org/doi/pdf/10.1063/5.0143186
Reference13 articles.
1. Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. Knowledge Discovery and Data Mining (KDD).
2. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
3. Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal. 2018. “Explaining Explanations: An Overview of Interpretability of Machine Learning”. The 5th IEEE International Conference on Data Science and Advanced Analytics (DSAA 2018).
4. Zachary C. Lipton. 2016. “The Mythos of Model Interpretability”. 2016 ICML Workshop on Human Interpretability in Machine Learning.
5. Finale Doshi-Velez and Been Kim. 2017. “Towards A Rigorous Science of Interpretable Machine Learning”. arXiv:1702.08608 [cs, stat]. ArXiv: 1702.08608.
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3