Vaccination games and imitation dynamics with memory

Author:

Kyrychko Y. N.1ORCID,Blyuss K. B.1ORCID

Affiliation:

1. Department of Mathematics, University of Sussex , Brighton BN1 9QH, United Kingdom

Abstract

In this paper, we model dynamics of pediatric vaccination as an imitation game, in which the rate of switching of vaccination strategies is proportional to perceived payoff gain that consists of the difference between perceived risk of infection and perceived risk of vaccine side effects. To account for the fact that vaccine side effects may affect people’s perceptions of vaccine safety for some period of time, we use a delay distribution to represent how memory of past side effects influences current perception of risk. We find disease-free, pure vaccinator, and endemic equilibria and obtain conditions for their stability in terms of system parameters and characteristics of a delay distribution. Numerical bifurcation analysis illustrates how stability of the endemic steady state varies with the imitation rate and the mean time delay, and this shows that it is not just the mean duration of memory of past side effects, but also the actual distribution that determines whether disease will be maintained in the population at some steady level, or if sustained periodic oscillations around this steady state will be observed. Numerical simulations illustrate a comparison of the dynamics for different mean delays and different distributions, and they show that even when periodic solutions are observed, there are differences in their amplitude and period for different distributions. We also investigate the effect of constant public health information campaigns on vaccination dynamics. The analysis suggests that the introduction of such campaigns acts as a stabilizing factor for endemic equilibrium, allowing it to remain stable for larger values of mean time delays.

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Delay induced stability switch in a mathematical model of CD8 T-cell response to SARS-CoV-2 mediated by receptor ACE2;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-04-01

2. Introduction to focus issue: Control of self-organizing nonlinear systems;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-01-01

3. Heterogeneous decision-making dynamics of threshold-switching agents on complex networks;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3