Concentration and cavitation phenomena of Riemann solutions for the generalized Chaplygin gas equations under the flux approximation

Author:

Shao ZhiqiangORCID,Huang MeixiangORCID

Abstract

In this paper, we investigate the concentration and cavitation phenomena of Riemann solutions for the generalized Chaplygin gas equations in the presence of flux approximation. The concentration and cavitation are fundamental and physical phenomena in fluid dynamics, which can be mathematically described by delta shock waves and vacuums (or constant density states), respectively. The main objective of this paper is to rigorously investigate the formation of delta shock waves and constant density states and observe the concentration and cavitation phenomena. First, the Riemann problem for the generalized Chaplygin gas equations under the flux approximation is solved constructively. Although the system is strictly hyperbolic and its two characteristic fields are genuinely nonlinear, the delta shock wave arises in Riemann solutions. The formation of mechanism for delta shock wave is analyzed, that is, the 1-shock wave curve and the 2-shock wave curve do not intersect each other in the phase plane. Second, it is rigorously proved that, as the pressure vanishes, the Riemann solutions for the generalized Chaplygin gas equations under the flux approximation tend to the two kinds of Riemann solutions to the transport equations in zero-pressure flow under the flux approximation, which include a delta shock wave formed by a weighted δ-measure and a constant density state.

Funder

Natural Science Foundation of Fujian Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3