Nanostructured binary transition-metal-sulfides and nanocomposites as high-performance electrodes for hybrid supercapacitors

Author:

Sun Mengxuan1,Ren Xiaohe1,Gan Ziwei1,Liu Mingdong1ORCID,Sun Yongxiu1,Shen Wenzhong2ORCID,Li Zhijie1ORCID,Fu YongQing3

Affiliation:

1. School of Physics, University of Electronic Science and Technology of China 1 , Chengdu 611731, People's Republic of China

2. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science 2 , Taiyuan 030001, People's Republic of China

3. School of Mechanical Engineering, Xi'an Jiaotong University 3 , Xian, Shaanxi 710049, People's Republic of China

Abstract

Supercapacitors (SCs) are attractive as promising energy storage devices because of their distinctive attributes, such as high power density, good current charge/discharge ability, excellent cyclic stability, reasonable safety, and low cost. Electrode materials play key roles in achieving excellent performance of these SCs. Among them, binary transition metal sulfides (BTMSs) have received significant attention, attributed to their high conductivity, abundant active sites, and excellent electrochemical properties. This topic review aims to summarize recent advances in principles, design, and evaluation of the electrochemical performance for nanostructured BTMSs (including nickel–cobalt sulfides, zinc–cobalt sulfides, and copper–cobalt sulfides.) and their nanocomposites (including those carbon nanomaterials, transition metal oxides, binary transition metal oxides, transition metal sulfides, and polymers). Nanostructuring of these BTMSs and nanocomposites as well as their effects on the performance were discussed, including nanoparticles, nanospheres, nanosheets, nanowires, nanorods, nanotubes, nanoarrays, and hierarchitectured nanostructures. Their electrochemical performance has further been reviewed including specific capacitance, conductivity, rate capability, and cycling stability. In addition, the performance of hybrid supercapacitors (HSCs) assembled using the nanostructured BTMSs as the cathodes also have been summarized and compared. Finally, challenges and further prospects in the HSCs-based BTMS electrodes are presented.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3