Rheology of supercooled P–Se glass-forming liquids: From networks to molecules and the emergence of power-law relaxation behavior

Author:

Yuan Bing1,Aitken Bruce G.2,Sen Sabyasachi1ORCID

Affiliation:

1. Department of Materials Science and Engineering, University of California at Davis, Davis, California 95616, USA

2. Science and Technology Division, Corning, Inc., Corning, New York 14831, USA

Abstract

The effect of the network-to-molecular structural transformation with increasing phosphorus content in P xSe100− x (30 ≤ x ≤ 67) supercooled liquids on their shear-mechanical response is investigated using oscillatory shear rheometry. While network liquids with 30 ≤ x ≤ 40 are characterized by shear relaxation via a network bond scission/renewal process, a Maxwell scaling of the storage (G′) and loss (G″) shear moduli, and a frequency-independent viscosity at low frequencies, a new relaxation process emerges in liquids with intermediate compositions (45 ≤ x ≤ 50). This process is attributed to an interconversion between network and molecular structural moieties. Predominantly molecular liquids with x ≥ 63, on the other hand, are characterized by a departure from Maxwell behavior as the storage modulus shows a linear frequency scaling G′(ω) ∼ ω over nearly the entire frequency range below the G′–G″ crossover and a nearly constant ratio of G″/G′ in the terminal region. Moreover, the dynamic viscosity of these rather fragile molecular liquids shows significant enhancement over that of network liquids at frequencies below the dynamical onset and does not reach a frequency-independent regime even at frequencies that are four orders of magnitude lower than that of the onset. Such power-law relaxation behavior of the molecular liquids is ascribed to an extremely broad distribution of relaxation timescales with the coexistence of rapid rotational motion of individual molecules and cooperative dynamics of transient molecular clusters, with the latter being significantly slower than the shear relaxation timescale.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3