Numerical investigation on non-linear streaming effects in a two-stage coaxial pulse tube cryocooler

Author:

C Damu1ORCID,Moudghalya Sumukh2ORCID,Nerale Mrunal M.2ORCID,Panda Debashis2ORCID,K S Rajendra Prasad3ORCID,Behera Upendra2ORCID,Reddy B. N. Sathyanarantana1

Affiliation:

1. Department of Mechanical Engineering, Sambhram Institute of Technology 1 , Bangalore 560097, India

2. Centre for Cryogenic Technology, Indian Institute of Science 2 , Bangalore, India

3. Department of Mechanical and Industrial Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education 3 , Manipal 560064, India

Abstract

Stirling pulse tube cryocoolers (PTC) are widely used in aerospace applications for the cooling of infrared sensors and for filtering background thermal noise in the astro-imaging devices, etc. Present investigation aims to use numerical methods to demonstrate the nonlinear fluid flow, heat transfer, and vortex generation phenomena in a two-stage coaxial type inertance pulse tube cryocooler. The numerical simulation is conducted using commercially available Fluent® code for both single-stage and multi-stage configurations to show nonlinear processes with varying heat load conditions. It has been noticed that the width of the vortex produced inside the pulse tube grows with an increase in heat load capacity. This undesirable flow conditions yields an adverse effect in the cooling behavior and reduces overall performance of cryocooler with higher heat load. Additionally, streamlines, stream function, pressure and temperature variation plots are given for both stages with different heat load capacity to substantiate our results.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3