Efficient spatial separation for chiral molecules via optically induced forces

Author:

Cheng Jian-Jian1

Affiliation:

1. School of Science , Xi’an University of Posts and Telecommunications, Xi’an 710121, China

Abstract

We investigate an efficient spatial enantioseparation method of chiral molecules in cyclic three-level systems coupled with three optical fields using optically induced forces. When the overall phase differs by π between two enantiomers, significant variations in the magnitude and direction of the optically induced forces are observed. The manipulation of the center of mass of chiral molecules in optical fields can be achieved through the induced gauge force, primarily generated from the variations in the chirality-dependent scalar potentials created by the three inhomogeneous laser fields. By appropriately configuring the system, we can completely separate the slow spatial and fast inner dynamics, making instantaneous eigenstates of the inner Hamiltonian independent of the transverse profiles of the laser beams. Compared to previous methods, which required adiabatic conditions to be satisfied, the proposed method overcomes the limitations of the adiabatic approximation by utilizing a specific system configuration. This allows for increased flexibility in the transverse profiles of the laser beams and relaxes the constraints on the velocity of chiral molecules, leading to significantly greater spatial separations achievable across a broader range of parameters.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3