Stochastic models of free-molecular nanopore flows

Author:

Kratzer Matthew M.1ORCID,Bhatia Suresh K.2ORCID,Klimenko Alexander Y.1ORCID

Affiliation:

1. School of Mechanical and Mining Engineering, The University of Queensland 1 , St. Lucia 4072, Australia

2. School of Chemical Engineering, The University of Queensland 2 , St. Lucia 4072, Australia

Abstract

In gas transport systems of the nanoscale, fluid–surface interactions become the main forces governing the evolution of the flow state. In ideal nanoscale systems, such as atomically smooth carbon nanotubes, the characteristic lengths reduce to such an extent that the non-equilibrium entrance region comprises a large proportion of the domain. In this regime, the added effective resistance induced by the non-equilibrium entrance region becomes large enough that classical effusion models break down. The mechanisms behind the resistance in this regime are still poorly understood. A stochastic model of interfacial resistance is developed here, which allows for the determination of the effective diffusion coefficient via a novel finite-difference solution. We use this method to model free-molecular gas flow through long nanotubes, showing that such non-equilibrium effects may be present in systems of length scales currently within manufacturing capabilities. Finally, this model is used to discuss gas separation through aligned carbon nanotube arrays, with a focus on the effect of membrane length on the separation of a H2–CH4 mixture.

Funder

Australian Research Council

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3