Thermalization dynamics in photonic lattices of different geometries

Author:

Yang Guowen1ORCID,Bongiovanni Domenico12ORCID,Song Daohong13,Morandotti Roberto2ORCID,Chen Zhigang13ORCID,Efremidis Nikolaos K.145ORCID

Affiliation:

1. MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University 1 , Tianjin 300457, China

2. INRS-EMT 2 , 1650 Blvd. Lionel-Boulet, Varennes, Quebec J3X 1S2, Canada

3. Collaborative Innovation Center of Extreme Optics, Shanxi University 3 , Taiyuan, Shanxi 030006, China

4. Department of Mathematics and Applied Mathematics, University of Crete 4 , Heraklion, Crete 70013, Greece

5. Institute of Applied and Computational Mathematics, FORTH 5 , Heraklion, Crete 70013, Greece

Abstract

The statistical mechanical behavior of weakly nonlinear multimoded optical settings has been attracting increased interest over the last few years. The main purpose of this work is to numerically investigate the main factors that affect the thermalization process in photonic lattices. In particular, we find that lattices with identically selected properties (such as temperature, coupling coefficient, lattice size, and excitation conditions) can exhibit very different thermalization dynamics and, thus, thermalization distances. Our investigation is focused on two different two-dimensional lattices: the honeycomb lattice and the triangular lattice. Our numerical results show that, independently of the excitation conditions, the honeycomb lattice always thermalizes faster than the triangular lattice. We mainly explain this behavior by the quasilinear spectrum that promotes wave-mixing in the honeycomb lattice in comparison to the power-like spectrum of the triangular lattice. In addition, we investigate the combined effects of temperature as well as the sign and magnitude of the nonlinearity. Switching either the sign of the Kerr nonlinear coefficient or the sign of the temperature can lead to significant differences in the thermalization dynamics, a phenomenon that can be physically explained in terms of wave instabilities. Larger absolute values of the temperature |T| result in more uniform distributions for the power occupation numbers and faster thermalization speeds. Finally, as expected, increasing the magnitude of the nonlinearity results in accelerated thermalization. Our findings provide valuable insights into optical thermalization in discrete systems, where experimental realization may bring about new possibilities for light manipulation and applications.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3