230-fold Enhancement of second-harmonic generation by coupled double resonances in a dolmen-type gold metasurface

Author:

Sun Xiaoteng1ORCID,Gui Lili1ORCID,Xie Hailun1ORCID,Liu Yiwen1ORCID,Xu Kun1ORCID

Affiliation:

1. State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications , Beijing 100876, China

Abstract

Optical metasurfaces, artificial planar nanostructures composed of subwavelength meta-atoms, have attracted significant attention due to their ability to tailor optical nanoscale properties, making them a versatile platform for shaping light in both linear and nonlinear regimes. This paper reports on the realization of second harmonic generation (SHG) enhancement based on a dolmen-type gold metasurface containing two resonances. Nonlinear scattering theory is employed to numerically investigate the SHG enhancement phenomenon in the resonant metasurface. The periodic dolmen-type gold metasurface introduces a diffraction coupling effect between Fano resonance and surface lattice resonance (SLR), providing strong local-field enhancement and significantly enhancing the nonlinear effect. We analyze the influence of the coupling between Fano resonance and SLR on the SHG intensity and achieve a 230-fold enhancement in SHG intensity compared to the single resonance case by adjusting the periodicity of the metasurface. The SHG-enhanced gold metasurface may find applications in sensing, imaging, optical computing, and integrated nonlinear optics.

Funder

Beijing Nova Program of Science and Technology

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Fund of State Key Laboratory of Information Photonics and Optical Communications

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3