Spin-crossover complexes: Self-interaction correction vs density correction

Author:

Ruan Shiqi1ORCID,Jackson Koblar A.2ORCID,Ruzsinszky Adrienn1ORCID

Affiliation:

1. Department of Physics, Temple University 1 , Philadelphia, Pennsylvania 19122, USA

2. Physics Department and Science of Advanced Materials Ph. D. Program, Central Michigan University 2 , Mount Pleasant, Michigan 48858, USA

Abstract

Complexes containing a transition metal atom with a 3d4–3d7 electron configuration typically have two low-lying, high-spin (HS) and low-spin (LS) states. The adiabatic energy difference between these states, known as the spin-crossover energy, is small enough to pose a challenge even for electronic structure methods that are well known for their accuracy and reliability. In this work, we analyze the quality of electronic structure approximations for spin-crossover energies of iron complexes with four different ligands by comparing energies from self-consistent and post-self-consistent calculations for methods based on the random phase approximation and the Fermi–Löwdin self-interaction correction. Considering that Hartree–Fock densities were found by Song et al., J. Chem. Theory Comput. 14, 2304 (2018), to eliminate the density error to a large extent, and that the Hartree–Fock method and the Perdew–Zunger-type self-interaction correction share some physics, we compare the densities obtained with these methods to learn their resemblance. We find that evaluating non-empirical exchange-correlation energy functionals on the corresponding self-interaction-corrected densities can mitigate the strong density errors and improves the accuracy of the adiabatic energy differences between HS and LS states.

Funder

U.S. Department of Energy

National Science Foundation

DEVCOM Army Research Laboratory

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3