Experimental verification and rapid estimation of uncalibrated cable force via video-based and vibration-based measurements

Author:

Li Yanhao12ORCID,Udi Ufuoma Joseph1ORCID,Yussof Mustafasanie M.1ORCID,Tan Xing2ORCID

Affiliation:

1. School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia 1 , 14300 Nibong Tebal, Pulau Pinang, Malaysia

2. School of Civil and Architectural Engineering, Yangtze Normal University 2 , 408100 Fuling, Chongqing, China

Abstract

The stayed-cable is an important component of cable-stayed bridges, with cable force being a focal point during construction and bridge operation. The advancement of camera and image processing technology has facilitated the integration of computer vision technology in structural inspection and monitoring. This paper focuses on enhancing cable force measurement methods and addressing the limitations of traditional testing techniques by conducting experimental research on cable force estimation using video recording. The proposed approach involves capturing video footage of the target on the cable with a smartphone. Subsequently, a combination of techniques such as the background subtraction method, image morphology processing, and Hough transform image processing technology are employed to detect the precise center coordinates and ultimately obtain the accurate displacement–time curve of the cable’s vibration. In addition, the graphic Circularity Coefficient (CC) has been introduced to assess its effectiveness in post-motion-blur image processing for circular targets. The fundamental frequency of the cable is determined by the fast Fourier transformation, and the relationship between the cable force and the fundamental frequency is used to estimate the cable force. The experimental results are compared with data from accelerometers and force gauges, demonstrating that the frequency measurement error is below 1.2% and the cable force test error is less than 3%. In the process of acquiring the cable’s fundamental frequency, the test directly employs the pixel as the displacement unit, eliminating the need for image calibration. The innovative use of the CC in processing motion-blurred targets ensured accurate recognition of target coordinates. The experimental findings highlight the method’s simplicity, speed, and accuracy.

Funder

Chongqing Municipal Education Commission

Chongqing Fuling Science and Technology Bureau

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3