Absolute electron density fluctuation reconstruction for two-dimensional hydrogen beam emission spectroscopy

Author:

Lampert M.1ORCID

Affiliation:

1. Princeton Plasma Physics Laboratory , Princeton, New Jersey 08540, USA

Abstract

Scrape-off layer (SOL) and edge plasma turbulence significantly contribute to the radial particle and heat transport, lowering the plasma confinement and increasing the heat load on the plasma facing components. SOL turbulence is predominantly intermittent, which manifests in the occurrence of isolated density filaments or blobs. Filaments propagate radially outward toward plasma facing components, limiting their lifetime by erosion and sputtering. To characterize this phenomenon in detail, few diagnostic techniques are available. Beam emission spectroscopy is a diagnostic capable of measuring plasma turbulence in both SOL and edge plasmas. Due to the finite lifetime of the excitation states during the beam–plasma interaction and the misalignment between the optics and the magnetic field, spatial smearing is introduced in the measurement. In this paper, a novel method is introduced to overcome this hindering effect by inverting the fluctuation response matrix on an optimally smoothed signal. We show that this method is fast and provides significantly more accurate absolute density fluctuation reconstruction than the direct inversion technique. The presented method is usable for all types of beam emission diagnostics where the spatial resolution is higher than the combined smearing of the atomic physics and the observation.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3