Impingement of vortex dipole on heated boundaries and related thermal plume dynamics

Author:

Kandre Shivakumar1ORCID,Hari Prasad P.1ORCID,Patil Dhiraj V.1ORCID

Affiliation:

1. Department of Mechanical, Materials, and Aerospace Engineering, Indian Institute of Technology Dharwad , Dharwad, Karnataka 580007, India

Abstract

The profound influence of an externally induced vortex dipole on thermal plume dynamics is numerically studied for varying Rayleigh numbers (Ra) employing the Bhatnagar–Gross–Krook collision model-based lattice Boltzmann method with a double distribution function approach. This study is extended to vortex dipole impingement with different types of heated bottom boundaries of two-dimensional domain, such as flat, “V-shaped,” and “inverted-V-shaped.” The vortex dipole impingement with the heated boundaries generates secondary vortices, which in turn produce vortex-driven thermal plumes, thereby advancing plume generation. The subsequent merging of the plumes enhances heat transport and leads to a continuous plume ascent. The presence of convex corners facilitates flow separation and also gives rise to the formation of secondary vortex dipoles, thereby significantly impacting the continuous generation of jet-like plumes when compared to concave configurations. The lack of an external vortex in pure buoyancy-driven flows produces less pronounced jet-like plumes and a relatively low Nusselt number. The boundary types and Ra significantly influence the vorticity production, resulting in higher enstrophy and palinstrophy for convex boundaries compared to flat and concave ones. A lower Prandtl number increases secondary vortices and corner rolls, leading to larger velocity gradients, higher thermal diffusivity, resulting in increased kinetic energy and thermal dissipation rates. The increased cell height enhances heat transfer at the top boundary due to improved heat convection from the slanted boundary and influence of early dipole impingement. Furthermore, kinetic energy dissipates in the dipole-driven flows and increases in the buoyancy-dominated flows.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3