Affiliation:
1. Lavrentyev Institute of Hydrodynamics , 15 Lavrentyev Ave., 630090 Novosibirsk, Russia
Abstract
We propose a system of first-order balance laws that describe the propagation of internal solitary waves in a multilayer stratified shallow water with non-hydrostatic pressure in the upper and lower layers. The construction of this model is based on the use of additional variables, which make it possible to approximate the Green–Naghdi-type dispersive equations by a first-order system. In the Boussinesq approximation, the governing equations allow one to simulate the propagation of non-linear internal waves, taking into account fine density stratification, a weak velocity shear in the layers, and uneven topography. We obtain smooth steady-state soliton-like solutions of the proposed model in the form of symmetric and non-symmetric waves of mode-2 adjoining to a given multilayer constant flow. Numerical calculations of the generation and propagation of large-amplitude internal waves are carried out using both the proposed first-order system and Green–Naghdi-type equations. It is established that the solutions of these models practically coincide. The advantage of the first-order equations is the simplicity of numerical implementation and a significant reduction in the calculation time. We show that the results of numerical simulation are in good agreement with the experimental data on the evolution of mode-2 solitary waves in tanks of constant and variable height.
Funder
Russian Science Foundation
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献