On the nature of the chemical bond in valence bond theory

Author:

Shaik Sason1ORCID,Danovich David1ORCID,Hiberty Philippe C.2ORCID

Affiliation:

1. Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel

2. CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France

Abstract

This Perspective outlines a panoramic description of the nature of the chemical bond according to valence bond theory. It describes single bonds and demonstrates the existence of a “forgotten family” of charge-shift bonds (CSBs) in which the entire/most of the bond energy arises from the resonance between the covalent and ionic structures of the bond. Many of the CSBs are homonuclear bonds. Hypervalent molecules (e.g., XeF2) are CSBs. This Perspective proceeds to describe multiple bonded molecules with an emphasis on C2 and 3O2. C2 has four electron pairs in its valence shell and, hence, 14 covalent structures and 1750 ionic structures. This Perspective outlines an effective methodology of peeling the electronic structure to the minimal and important number of structures: a dominant structure that displays a quadruple bond and two minor structures with [Formula: see text] + [Formula: see text] bonds, which stabilize the quadruple bond by resonance. 3O2 is chosen because it is a diradical, which is persistent and life-sustaining. It is shown that the persistence of this diradical is due to the charge-shift bonding of the [Formula: see text]-3-electron bonds. This section ends with a discussion of the roles of [Formula: see text] vs [Formula: see text] in the geometric preferences of benzene, acetylene, ethene, and their Si-based analogs. Subsequently, this Perspective discusses bonding in clusters of univalent metal atoms, which possess only parallel spins (n+1Mn), and are nevertheless bonded due to the resonance interactions that stabilize the repulsive elementary structure (all spins are up). The bond energy reaches ∼40 kcal/mol for a pair of atoms (in n+1Cun; n ∼ 10–12). The final subsection discusses singlet excited states in ethene, ozone, and SO2. It demonstrates the capability of the breathing-orbital VB method to yield an accurate description of a variety of excited states using merely 10 or few VB structures. Furthermore, the method underscores covalent structures that play a key role in the correct description and bonding of these excited states.

Funder

Israel Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3