Spectral domain isolation of ballistic component in visible light OCT based on random matrix description

Author:

Qiao Danlei12ORCID,Rubinoff Ian S.2,Zhou Jibo3,Troy John B.2ORCID,Zhang Hao F.2ORCID,Tong Shanbao1ORCID,Miao Peng1ORCID

Affiliation:

1. School of Biomedical Engineering, Shanghai Jiao Tong University 1 , Shanghai 200240, China

2. Department of Biomedical Engineering, Northwestern University 2 , Evanston, Illinois 60208, USA

3. Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine 3 , Shanghai 200011, China

Abstract

Visible light optical coherence tomography (vis-OCT) provides a unique tool for imaging both structure and oxygen metabolism in ophthalmology. Working in visible light bandwidth, it suffers from noises due to strong scattering, especially in the blood. This work established the random matrix (RM) description of vis-OCT’s k-space data as ballistic and multiple scattering components. The eigenvalue density of the hybrid RM follows a low-rank biased Marčenko–Pastur law. The ballistic component can thus be separated out using a generalized likelihood ratio test algorithm. The RM-based method was validated by both the Monte Carlo simulation and ex vivo pure blood phantom study. We further demonstrated that the RM-based method could significantly improve the imaging quality in the human fundus, showing more details of the layered structure than current vis-OCT with ∼23.6% increase of signal-to-noise ratio, measuring the blood oxygen value more accurately, and enabling better structure visualization than the traditional method, a 1.6-fold higher contrast-to-noise ratio in raster scan mode. The isolated ballistic component also fits the Beer–Lambert law better, giving more accurate oxygen saturation in arc scan mode. The RM-based method significantly improves the reconstruction quality in 3D and facilitates clinical diagnostics. As a general framework, random matrix description also provides a new separation strategy to estimate the ballistic component in other spectral domain OCT techniques.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3