Topological Data analysis of Ion Migration Mechanism

Author:

Sato Ryuhei1ORCID,Akagi Kazuto1ORCID,Takagi Shigeyuki2ORCID,Sau Kartik13ORCID,Kisu Kazuaki2ORCID,Li Hao1ORCID,Orimo Shin-ichi12ORCID

Affiliation:

1. Advanced Institute for Materials Research, Tohoku University 1 , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

2. Institute for Materials Research, Tohoku University 2 , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

3. Mathematics for Advanced Materials Open Innovation Laboratory (MathAM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), c/o Advanced Institute for Materials Research (AIMR), Tohoku University 3 , Sendai 980-8577, Japan

Abstract

Topological data analysis based on persistent homology has been applied to the molecular dynamics simulation for the fast ion-conducting phase (α-phase) of AgI to show its effectiveness on the ion migration mechanism analysis. Time-averaged persistence diagrams of α-AgI, which quantitatively record the shape and size of the ring structures in the given atomic configurations, clearly showed the emergence of the four-membered rings formed by two Ag and two I ions at high temperatures. They were identified as common structures during the Ag ion migration. The averaged potential energy change due to the deformation of the four-membered ring during Ag migration agrees well with the activation energy calculated from the conductivity Arrhenius plot. The concerted motion of two Ag ions via the four-membered ring was also successfully extracted from molecular dynamics simulations by our approach, providing new insight into the specific mechanism of the concerted motion.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electronic paddle-wheels in a solid-state electrolyte;Nature Communications;2024-01-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3