Separation-induced transition on a T106A blade under low and elevated free stream turbulence

Author:

Sengupta Aditi1ORCID,Gupta Nivedita1ORCID,Ubald Bryn Noel2

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines) 1 , Dhanbad, Jharkhand 826004, India

2. The Alan Turing Institute 2 , London NW1 2DB, United Kingdom

Abstract

The separation-induced transition on the suction surface of a T106A low pressure turbine blade is a complex phenomenon with implications for aerodynamic performance. In this numerical investigation, we explore an adverse pressure gradient-dominated flow subjected to varying levels of free stream excitation, as the underlying separation-induced transition is a critical factor in assessing blade profile loss. By comprehensively analyzing the effects of free stream turbulence (FST) on the transition process, we delve into the various mechanisms which govern the instabilities underlying bypass transition by studying the instantaneous enstrophy field. This involves solving the two-dimensional (2D) compressible Navier–Stokes equation through a series of numerical simulations, comparing a baseline flow to cases where FST with varying turbulent intensity (Tu=4% and 7%) is imposed at the inflow. Consistent with previous studies, the introduction of FST is observed to delay flow separation and trigger early transition. We explore the different stages of bypass transition, from the initial growth of disturbances (described by linear stability theory) to the emergence of unsteady separation bubbles that merge into turbulent spots (due to nonlinear interactions), by examining the vorticity dynamics. Utilizing the compressible enstrophy transport equation for the flow in a T106A blade passage, we highlight the various routes of bypass transition resulting from different levels of FST, emphasizing the relative contributions from baroclinicity, compressibility, and viscous terms.

Funder

Department of Science and Technology, Government of India

Publisher

AIP Publishing

Reference51 articles.

1. The transition mechanism of highly loaded low-pressure turbine blades;J. Turbomach.,2004

2. Wake passing in LP turbine blades,1996

3. Boundary layer development in axial compressors and turbines: Part 1 of 4—Composite picture;J. Turbomach.,1997

4. The influence of disturbances carried by periodically incoming wakes on the separating flow around a turbine blade;Int. J. Heat Fluid Flow,2006

5. Transition on the T106 LP turbine blade in the presence of moving upstream wakes and downstream potential fields,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3