Application of spectral-domain optical coherence tomography technique to in-process measure hole depth during femtosecond laser drilling in different alloys

Author:

Xu P.1,Yu Y.2ORCID,Liu R. J.1,Zha K.1,Zhou L.1,Liu Y. T.1,Xu Z.1

Affiliation:

1. School of Physics, Xihua University 1 , Chengdu 610039, China

2. Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University 2 , Zhuhai 519082, China

Abstract

In this paper, a real-time diagnostic based on the spectral-domain optical coherence technique has been developed to measure the hole depth during femtosecond laser drilling. This diagnostic borrows the idea of a fiber interferometer, and the hole is integrated as a part of the sample arm. By means of investigating the interference fringes detected by the line camera, the hole depth can be extracted. This diagnostic utilizes a broadband small-volume super-luminescent diode as the coherent light source, which has a central wavelength of 833 nm and a full width at half maximum of 24 nm. It has a temporal resolution of 50 µs and a maximal theoretic depth resolution of 12.8 µm. Three kinds of metal samples have been tested, confirming the ability of depth measurement. Copper has been proven to have the best-normalized reflectivity during drilling compared with aluminum alloy and stainless steel.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3