A gate- and flux-controlled supercurrent diode effect

Author:

Paolucci F.12ORCID,De Simoni G.2ORCID,Giazotto F.2ORCID

Affiliation:

1. INFN Sezione di Pisa 1 , Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy

2. NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore 2 , I-56127 Pisa, Italy

Abstract

Non-reciprocal charge transport in supercurrent diodes (SDs) has polarized growing interest in the last few years for their potential applications in superconducting electronics (SCE). So far, SD effects have been reported in complex hybrid superconductor/semiconductor structures or metallic systems subject to moderate magnetic fields, thus showing limited potentiality for practical applications in SCE. Here, we report the design and realization of a monolithic device that shows a valuable SD effect by exploiting a Dayem bridge-based superconducting quantum interference device. Our structure allows reaching rectification efficiencies (η) up to ∼6%. Moreover, the absolute value and the polarity of η can be selected on demand by the modulation of an external magnetic flux or by a gate voltage, thereby guaranteeing high versatility and improved switching speed. Furthermore, our SD operates in a wide range of temperatures up to about 70% of the superconducting critical temperature of the titanium film composing the interferometer. Our SD effect can find extended applications in SCE by operating in synergy with widespread superconducting technologies such as nanocryotrons, rapid single flux quanta, and memories.

Funder

Horizon 2020 Framework Programme

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3