Affiliation:
1. Division of Electronics and Electrical Engineering, Dongguk University , Seoul 04620, South Korea
Abstract
This study presents a preliminary exploration of thermally oxidized TaOx-based memristors and their potential as artificial synapses. Unlike the 10-min annealed devices, which display instability due to current overshoots, the 5-min annealed device exhibits stable resistive switching, retention, and endurance characteristics. Moreover, our memristor showcases synaptic behaviors encompassing potentiation, depression, spike-timing-dependent plasticity, and excitatory postsynaptic currents. This synaptic emulation holds tremendous promise for applications in neuromorphic computing, offering the opportunity to replicate the adaptive learning principles observed in biological synapses. In addition, we evaluate the device’s suitability for pattern recognition within a neural network using the modified National Institute of Standards and Technology dataset. Our assessment reveals that the Pt/TaOx/Ta memristor with an oxidized insulator achieves outstanding potential manifested by an accuracy of 93.25% for the identical pulse scheme and an impressive accuracy of 95.42% for the incremental pulse scheme.
Funder
National Research Foundation of Korea
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献