A novel method for measuring latent heat of low-temperature PCM phase transition by oxygen bomb calorimeter

Author:

Meng Fankang1ORCID,Jiang Zhixin1ORCID,Yan Minghui1

Affiliation:

1. Civil Engineering College, Liaoning Technical University, Fuxin 123000, China

Abstract

The method for the determination on the latent heat of phase change by oxygen bomb calorimetry of low-temperature phase change materials (PCMs) was feasible and validated. Experiments on the solidification of the variable boundary temperature of OP24 (the ratio was 57.5% caprylic acid + 42.5% myristic acid) low-temperature organic PCM, an energy storage medium, were carried out in a modified oxygen bomb calorimeter. In addition, a one-dimensional model of the solid–liquid two-phase cylindrical PCM solidification process was constructed by numerical simulation. Using the measured time-varying data of the PCM axial temperature, the oxygen bomb surface temperature, and the water temperature of the inner cylinder, the model was applied to approximate the latent heat of phase change of OP24 PCM using a cubic polynomial heat balance integration method. The calculated results were accurate for engineering applications when compared to the values obtained by differential scanning calorimetry. Moreover, the invisible phase interface moving with time could be obtained. The calculation process was relatively simple and convenient for engineering applications. Improving the accuracy of water temperature measurements in the inner cylinder could be the way forward to reduce experimental errors in the determination of the latent heat of phase change in low-temperature PCMs using oxygen bomb calorimetry.

Funder

Department of Science and Technology of Liaoning Province

Liaoning Technical University

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3