Structure-dependent optical nonlinearity of indium tin oxide

Author:

Britton Wesley A.1,Sgrignuoli Fabrizio2,Dal Negro Luca123ORCID

Affiliation:

1. Division of Materials Science & Engineering, Boston University, 15 Saint Mary's Street, Brookline, Massachusetts 02246, USA

2. Department of Electrical & Computer Engineering and Photonics Center, Boston University, 8 Saint Mary's Street, Boston, Massachusetts 02215, USA

3. Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA

Abstract

We use post-deposition vacuum annealing of epsilon-near-zero (ENZ) indium tin oxide (ITO) nanolayers in order to modify their structural properties and enhance the third-order optical nonlinear response around the ENZ wavelength. We find that room temperature magnetron sputtering deposition results in polycrystalline thin films with an intrinsic tensile strain and a ⟨110⟩ fiber axis preferentially oriented normal to the substrate. Moreover, we demonstrate that post-deposition vacuum annealing treatments produce a secondary anisotropic phase characterized by compressive strain that increases with the annealing temperature. Finally, we use the Z-scan optical technique to accurately measure the complex nonlinear susceptibility [Formula: see text] and the intensity-dependent refractive index change [Formula: see text] for samples with different structural properties despite featuring similar ENZ wavelengths. Our intensity-dependent analysis demonstrates that an enhancement of the optical nonlinearity can be achieved by tuning the structure of ENZ nanolayers with values as large as [Formula: see text]. This study unveils the importance of structural control and secondary phase formation in ITO nanolayers with ENZ optical dispersion properties for the engineering of integrated highly nonlinear devices and metamaterials that are compatible with the scalable silicon photonics platform.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3