Transition from viscous fingers to foam during drainage in heterogeneous porous media

Author:

Lanza Federico12ORCID,Sinha Santanu3ORCID,Hansen Alex2ORCID,Rosso Alberto1ORCID,Talon Laurent1ORCID

Affiliation:

1. Université Paris-Saclay, CNRS, LPTMS 1 , 91405 Orsay, France

2. PoreLab, Department of Physics, Norwegian University of Science and Technology 2 , N-7491 Trondheim, Norway

3. PoreLab, Department of Physics, University of Oslo 3 , N-0316 Oslo, Norway

Abstract

We investigate the behavior of drainage displacements in heterogeneous porous media finding a transition from viscous fingering to foam-like region. A pore network model incorporating the formation of blobs is adopted to study this phenomenon. By imposing a pressure difference between the inlet and outlet, we observe that the displacement pattern undergoes a significant transition from a continuous front of growing viscous fingers to the emergence of foam, which develops and propagates until breakthrough. This transition occurs at a specific distance from the inlet, which we measure and analyze as a function of the viscosity ratio and the capillary number, demonstrating that it follows a non-trivial power-law decay with both the parameters. Moreover, we discuss the relationship between the evolution of the total flow rate and the local pressure drop, showing that the foam developed reduces global mobility. We observe that foam is formed from the fragmentation of viscous fingers beneath the front, and this instability mechanism is connected with fluctuations of the local flow rate, which we analyze both in the viscous fingering region and in the foam region.

Funder

Research Council of Norway - Centre of Excellence

Research Council of Norway - INTPART program

Laboratoire d'excellence Physique Atomes Lumière Matière

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3