Linear stability analysis via simulated annealing and accelerated relaxation

Author:

Furukawa M.1ORCID,Morrison P. J.2ORCID

Affiliation:

1. Faculty of Engineering, Tottori University, Minami 4-101, Koyama-cho, Tottori-shi, Tottori 680-8552, Japan

2. Department of Physics and Institute for Fusion Studies, University of Texas at Austin, Texas 78712, USA

Abstract

Simulated annealing (SA) is a kind of relaxation method for finding equilibria of Hamiltonian systems. A set of evolution equations is solved with SA, which is derived from the original Hamiltonian system so that the energy of the system changes monotonically while preserving Casimir invariants inherent to noncanonical Hamiltonian systems. The energy extremum reached by SA is an equilibrium. Since SA searches for an energy extremum, it can also be used for stability analysis when initiated from a state where a perturbation is added to an equilibrium. The procedure of the stability analysis is explained, and some examples are shown. Because the time evolution is computationally time consuming, efficient relaxation is necessary for SA to be practically useful. An acceleration method is developed by introducing time dependence in the symmetric kernel used in the double bracket, which is part of the SA formulation described here. An explicit formulation for low-beta reduced magnetohydrodynamics (MHD) in cylindrical geometry is presented. Since SA for low-beta reduced MHD has two advection fields that relax, it is important to balance the orders of magnitude of these advection fields.

Funder

Japan Society for the Promotion of Science

U.S. Department of Energy

Alexander von Humboldt-Stiftung

Joint Institute for Fusion Theory, US-Japan Fusion Research Collaboration

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3