Ion acceleration from the interaction of ultrahigh-intensity laser pulses with near-critical density, nonuniform gas targets

Author:

Ospina-Bohórquez V.1234ORCID,Debayle A.12ORCID,Santos J. J.3ORCID,Volpe L.56ORCID,Gremillet L.12ORCID

Affiliation:

1. CEA, DAM 1 , DIF, F-91297 Arpajon, France

2. Université Paris-Saclay, CEA, LMCE 2 , 91690 Bruyères-le-Châtel, France

3. Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107 3 , Talence, France

4. Universidad de Salamanca 4 , 37008, Salamanca, Spain

5. ETSIAE Universidad Politecnica de Madrid 5 , 28006 Madrid, Spain

6. Centro de Láseres Pulsados (CLPU) 6 , Parque Cientifico, E-37185 Villamayor, Salamanca, Spain

Abstract

Using one-dimensional, long-timescale particle-in-cell simulations, we study the processes of ion acceleration from the interaction of ultraintense (1020 W cm−2), ultrashort (30 fs) laser pulses with near-critical, nonuniform gas targets. The considered initially neutral, nitrogen gas density profiles mimic those delivered by an already developed noncommercial supersonic gas shock nozzle: they have the generic shape of a narrow (20 μm wide) peak superimposed on broad (∼1 mm, ∼180 μm scale length), exponentially decreasing ramps. While keeping its shape constant, we vary its absolute density values to identify the interaction conditions leading to collisionless shock-induced ion acceleration in the gas density ramps. We find that collisionless electrostatic shocks (CES) form when the laser pulse is able to shine through the central density peak and deposit a few 10% of its energy into it. Under our conditions, this occurs for a peak electron density between 0.35 nc and 0.7 nc. Moreover, we show that the ability of the CES to reflect the upstream ions is highly sensitive to their charge state and that the laser-induced electron pressure gradients mainly account for shock generation, thus highlighting the benefit of using sharp gas profiles, such as those produced by shock nozzles.

Funder

Laserlab-Europe

Agence Nationale de la Recherche

Grand Équipement National De Calcul Intensif

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3