Machine learning accelerated photodynamics simulations

Author:

Li Jingbai1ORCID,Lopez Steven A.2ORCID

Affiliation:

1. Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic 1 , 7098 Liuxian Boulevard, Shenzhen, Guangdong 518055, People's Republic of China

2. Department of Chemistry and Chemical Biology, Northeastern University 2 , Boston, Massachusetts 02115, USA

Abstract

Machine learning (ML) continues to revolutionize computational chemistry for accelerating predictions and simulations by training on experimental or accurate but expensive quantum mechanical (QM) calculations. Photodynamics simulations require hundreds of trajectories coupled with multiconfigurational QM calculations of excited-state potential energies surfaces that contribute to the prohibitive computational cost at long timescales and complex organic molecules. ML accelerates photodynamics simulations by combining nonadiabatic photodynamics simulations with an ML model trained with high-fidelity QM calculations of energies, forces, and non-adiabatic couplings. This approach has provided time-dependent molecular structural information for understanding photochemical reaction mechanisms of organic reactions in vacuum and complex environments (i.e., explicit solvation). This review focuses on the fundamentals of QM calculations and ML techniques. We, then, discuss the strategies to balance adequate training data and the computational cost of generating these training data. Finally, we demonstrate the power of applying these ML-photodynamics simulations to understand the origin of reactivities and selectivities of organic photochemical reactions, such as cis–trans isomerization, [2 + 2]-cycloaddition, 4π-electrostatic ring-closing, and hydrogen roaming mechanism.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3