Study on the response of the winding direction of multi-layer CORC cable to its electromagnetic characteristics

Author:

Jia Rongli1ORCID,Zhou Wenhai1ORCID,Liang Rui1,Su Bingxu1ORCID,Hu Zongwu1

Affiliation:

1. School of Petrochemical Technology, Lanzhou University of Technology , Lanzhou 730050, China

Abstract

A Conductor on Round Core (CORC) cable wound with a high-temperature superconductor is an important cable concept for high-current density applications. It is widely used in large power systems because of its advantages of good flexibility and high engineering current density. However, the complex design structure of CORC cable makes it very difficult to understand its electromagnetic properties (such as AC loss). In particular, the different winding directions of each layer in multi-layer cable have a great influence on its electromagnetic characteristics. In this paper, the H-method is used to solve the electromagnetism and mechanics equations. The influence of the winding direction of CORC cable on its electromagnetic field distribution characteristics, AC loss, and mechanical variation under the action of external magnetic field is investigated. The AC loss study of single-layer cable reveals that when the applied magnetic field is increased from 0.01 to 0.02 and 0.03 T, the AC loss peak of the cable increases by 107 and 103 orders of magnitude, respectively, indicating that the effect of low applied magnetic field on the AC loss of the cable is more significant. For multi-layer cables, cables with opposite winding directions have a greater depth of current density penetration than cables with the same winding direction. In addition, the mechanical variations of multi-layer cables with different winding orientations are explored. The results show that the Mises stress in the cable with the same winding direction is about 32% higher than that of the cable with the opposite winding direction, which indicates that the method of winding the cable in the opposite direction between adjacent layers of tape can avoid excessive mechanical stress.

Funder

National Natural Science Foundation of China

Key Science and Technology Foundation of Gansu Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3