Precise measurement of correlation parameters driving optical transparency in CaVO3 thin film by steady state and time resolved terahertz spectroscopy

Author:

Anagha P.1,Kinha Monu1,Khare Amit1ORCID,Rana D. S.1ORCID

Affiliation:

1. Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India

Abstract

Transparent conducting materials are inevitable in the fast-developing optoelectronic and photovoltaic industries. Correlated metals are emerging classes of materials that possess a charge density comparable to the metals in which the correlation effects provide transparency. So, understanding the fundamental physics of these materials is equally important to improve the performance of devices. We have investigated the low energy and non-equilibrium dynamics of the CaVO3 (CVO) thin film using terahertz time-domain and time-resolved terahertz spectroscopic measurements. Though the electrical resistivity of the CVO thin film shows a Fermi liquid-like signature, the terahertz conductivity dynamics unveil the presence of metal-insulator transition. Furthermore, the mass renormalization effects indicate the competition between electron correlations and phonon interactions in driving the ground state of this system. It is clear that the relaxation of photo-excited carriers is through electron–phonon thermalization, and comprehensive studies show the metallic nature of the system with electron correlations. Thus, the extracted optical and electrical parameters of CVO are comparable with the existing transparent conducting materials and, hence, make this system another potential candidate for transparent electronics.

Funder

Science and Engineering Research Board

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward ultraclean correlated metal CaVO3;APL Materials;2023-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3