Liquid/air dynamic behaviors and regulation mechanisms for bioinspired surface

Author:

Zhang Liwen1ORCID,Wang Yan1,Wang Zelinlan1ORCID,Liu Guang2ORCID,Guo Yurun1,Liu Xiaolin1,Zhang Deyuan1,Jiang Lei3ORCID,Chen Huawei14ORCID

Affiliation:

1. School of Mechanical Engineering and Automation, Beihang University, Beijing, China

2. College of Mechanical Engineering, Hebei University of Science and Technology, Hebei, China

3. Laboratory of Bioinspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China

4. Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China

Abstract

Liquid/air accurate regulation has attracted growing attention in recent years for its diverse potential applications in bio-medicines, heat management, green energy, etc. Natural surfaces evolved innumerable hierarchical structures with exceptional functions to govern or regulate the liquid dynamic behaviors for their vital living, which have gradually been discovered as inspirations for creative design, such as fog harvesting, water fast transporting, and strong wet attachment. This review summarizes the current progress of bioinspired liquid/air regulations and their underlying mechanisms, including fast liquid/air spreading, liquid/air directional transport, and the interfacial liquid/air bridge acting forces. A fundamental understanding of both liquid/air dynamic behaviors on liquid–air–solid interfaces and their effects on the surface function has been increased with awareness of the importance of coupling effects from surface structures and material properties. The design principles and fabrication methods for bioinspired surface structure with unique liquid/air regulation are concluded, and several significant applications for electronics heat dissipation and biomedical devices are also presented. Finally, we provide new insights and future perspectives for the liquid/air regulation-based bioinspired functional materials.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Beihang University

Natural Science Foundation of Hebei Province

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3