Affiliation:
1. Department of Physics, Indian Institute of Technology Patna , Bihta, Bihar 801106, India
Abstract
We have theoretically explored the electronic and thermoelectric properties of the C2P4 monolayer with the interface of density functional theory and semi-classical transport theory. Our calculation shows a high Seebeck coefficient and low electronic thermal conductivity in the vicinity of zero chemical potential (μ = 0), resulting in a good power factor (PF) and a high figure of merit (ZT). More particularly, the electronic figure of merit (ZTe) exhibits two high peak values around μ = 0 due to the significant contribution of thermoelectric parameters. Furthermore, ZTe decreases by increasing the temperature, giving a peak value of 0.98 in the negative chemical potential (μ), whereas, for μ > 0, the peak value increases slightly with temperature. Additionally, the ZTe peak value is robust against ±10% of uni- and biaxial strains at room temperature. To make our calculation more realistic, we add phonon contributions to the thermal conductivity in pristine C2P4 and calculate the total ZT. We have found that phonon contribution dominates at low temperatures, and the ZT peak is reduced to 0.78. These optimal thermoelectric parameters of the C2P4 monolayer may be suitable for demonstrating the feasibility of a good thermoelectric material.
Funder
Science and Engineering Research Board
University Grants Commission
Department of Science and Technology, Ministry of Science and Technology, India
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献