Abstract
The mixing characteristics of hydrogen and air are vital to combustion performance. Excellent hydrogeni–air mixing is required to avoid hot spots in the reactivity of hydrogen in a combustion chamber. The present study aims to explore a mixing enhancement mechanism for a hydrogen transverse jet in which a rib is added in front of the jet. A schlieren technique is used to visualize the flow field of the improved hydrogen jet, and the combustion performance of the improved flame stabilizer is studied. The results show that the penetration depth and mixing performance of the hydrogen jet are improved. At its outset, the hydrogen jet flows like a free jet downstream of the rib. The flow pattern of the hydrogen jet is then changed by the shear layer between the low-velocity region and the mainstream. Ideal mixing performance is ultimately achieved under the strong effect of the mainstream. Combustion experiments show that the mixing and combustion performance are greatly improved by the rib in front of the jet. This study provides an important theoretical basis for the design of gaseous fuel combustors.
Funder
National Science and Technology Major Project
National Natural Science Foundation of China
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献