Hamiltonian neural networks with automatic symmetry detection

Author:

Dierkes Eva1ORCID,Offen Christian2ORCID,Ober-Blöbaum Sina2ORCID,Flaßkamp Kathrin3ORCID

Affiliation:

1. Center for Industrial Mathematics, University of Bremen 1 , 28359 Bremen, Germany

2. Department of Mathematics, Paderborn University 2 , 33098 Paderborn, Germany

3. Systems Modeling and Simulation, Saarland University 3 , 66123 Saarbrücken, Germany

Abstract

Recently, Hamiltonian neural networks (HNNs) have been introduced to incorporate prior physical knowledge when learning the dynamical equations of Hamiltonian systems. Hereby, the symplectic system structure is preserved despite the data-driven modeling approach. However, preserving symmetries requires additional attention. In this research, we enhance HNN with a Lie algebra framework to detect and embed symmetries in the neural network. This approach allows us to simultaneously learn the symmetry group action and the total energy of the system. As illustrating examples, a pendulum on a cart and a two-body problem from astrodynamics are considered.

Funder

Deutsche Forschungsgemeinschaft

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning of discrete models of variational PDEs from data;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-01-01

2. Learning Discrete Lagrangians for Variational PDEs from Data and Detection of Travelling Waves;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3