Affiliation:
1. High Performance Computing (HPC) Laboratory, Department of Mechanical Engineering, Ferdowsi University of Mashhad, 91775-1111 Mashhad, Iran
2. State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics (ICAM), School of Aerospace Engineering, Xi'an Jiaotong University (XJTU), Xianning West Road, Beilin District, Xi'an 710049, China
Abstract
Here, rarefied thermally driven flow is investigated in two-dimensional equilateral triangular cavities with different uniform wall temperatures. We used three different solvers, i.e., the direct simulation Monte Carlo solver, discrete unified gas kinetic scheme solver, and continuum set of equations of a slow non-isothermal flow solver. Two main cases were considered; in the first case, the cavity's base is considered hot, and the other sides were set cold. In the second case, the right half of the bottom wall was regarded as a diffuse reflector with high temperature, while the left half of the bottom border was set as a specular reflector. The adjacent side walls were set cold with diffuse reflector boundary conditions. The imposed temperature difference/wall boundary condition induces various vortices in the geometry. In case 1, we observe that principal vortices appearing in the triangle are due to nonlinear thermal stress effects, and the thermal creep effects cause other smaller, confined ones. In case 2, a thermal edge flow is set up from the specular wall on the way to the diffusive hot wall, creating a large vortex in the geometry. As the Knudsen number decreases, another small vortex appears near the left cold border.
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献