Spray, flowfield, and combustion characteristics of an external mixing atomizer in a novel cavity-swirler-based combustor

Author:

He Wu,Zhao YulingORCID,Fan WeijunORCID

Abstract

This paper presents an investigation into the performance of two external mixing atomizers designed for a novel cavity-swirler-based combustor, with the aim of achieving high combustion efficiency and uniform outlet temperature distribution. Experimental and numerical analyses were conducted to study the spray characteristics of the atomizers, including the Sauter mean diameter (SMD) and spray angle. The flow field, combustion efficiency, outlet temperature distribution, and pattern factor of the two atomizers were examined under atmospheric pressure and a temperature of 473 K. The results show that the external mixing prefilming atomizer (case-1) exhibits larger SMD and spray angle compared to the external mixing pressure-swirl atomizer (case-2). Furthermore, case-1 demonstrates higher combustion efficiency than case-2 under pilot-only fueling conditions, which is attributed to the larger wake regions achieved by case-1. Interestingly, under pilot-main fueling conditions, case-2 achieves higher combustion efficiency than case-1. This is due to the smaller SMD and longer residence time achieved by case-2. Moreover, case-1 demonstrates more uniform outlet temperature distribution and smaller pattern factor than case-2. This is mainly attributed to the large-scale axial vortex generated by case-2, which significantly improves the mixing intensity between cavity and mainstream.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference24 articles.

1. Performance of a trapped-vortex combustor,1995

2. A review of cavity-based trapped vortex, ultra-compact, high-g, inter-turbine combustors;Prog. Energy Combust. Sci.,2018

3. Experimental study on the influence of inlet velocity and fuel/air ratio on outlet temperature profile performance in a turboshaft engine combustor;Fuel,2024

4. Performance assessment of a prototype trapped vortex combustor concept for gas turbine application

5. Large eddy simulation of swirling flows in a non-reacting trapped-vortex combustor;Aerosp. Sci. Technol.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3