Synthesis of Ni decorated MoOx nanorod catalysts for efficient overall urea–water splitting

Author:

Li Zhiwei1ORCID,Yang Wenwen1,Xiong Kun1ORCID,Chen Jia1ORCID,Zhang Haidong1,Yang Mingliang1,Gan Xing1,Gao Yuan1ORCID

Affiliation:

1. Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, College of Environment and Resources, Chongqing Technology and Business University , No. 19 Xuefu Avenue, Chongqing 400067, People’s Republic of China

Abstract

Substituting slow oxygen evolution reaction (OER) with thermodynamically favorable urea oxidation reaction (UOR) is considered as one of the feasible strategies for achieving energy-saving hydrogen production. Herein, a uniform layer of NiMoO4 nanorods was grown on nickel foam by a hydrothermal method. Then, a series of Ni-MoOx/NF-X nanorod catalysts comprising Ni/NiO and MoOx (MoO2/MoO3) were prepared through regulating annealing atmosphere and reduction temperature. The optimized Ni-MoOx/NF-3 with a large accessible specific area can act as a bifunctional catalyst for electrocatalytic anodic UOR and cathodic hydrogen evolution reaction (HER). At a current density of 100 mA cm−2, the introduction of urea can significantly reduce the overpotential of Ni-MoOx/NF-3 by 210 mV compared to OER. In addition, Ni-MoOx/NF-3 has a higher intrinsic activity than other catalysts. It only requires −0.21 and 1.38 V to reach 100 mA cm−2 in HER and UOR, respectively. Such an excellent performance can be attributed to the synergistic function between Ni and MoOx. The presence of metallic Ni and reduced MoOx in pairs is beneficial for improving the electrical conductivity and modulating the electronic structure, resulting in enhancing the electrocatalytic performance. When assembling Ni-MoOx/NF-3 into an overall urea–water splitting system, it can achieve energy-saving hydrogen production and effective removal of urea-rich wastewater.

Funder

National Natural Science Foundation of China

Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission

Chongqing Municipal Education Commission Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3