wfl Python toolkit for creating machine learning interatomic potentials and related atomistic simulation workflows

Author:

Gelžinytė Elena1ORCID,Wengert Simon2ORCID,Stenczel Tamás K.1ORCID,Heenen Hendrik H.2ORCID,Reuter Karsten2ORCID,Csányi Gábor1ORCID,Bernstein Noam3ORCID

Affiliation:

1. Engineering Laboratory, University of Cambridge 1 , Trumpington Street, Cambridge CB2 1PZ, United Kingdom

2. Fritz-Haber-Institut der Max-Planck-Gesellschaft 2 , Faradayweg 4-6, D-14195 Berlin, Germany

3. Center for Materials Physics and Technology, U. S. Naval Research Laboratory Code 6393 3 , 4555 Overlook Ave. SW, Maryland, Washington, DC 20375, USA

Abstract

Predictive atomistic simulations are increasingly employed for data intensive high throughput studies that take advantage of constantly growing computational resources. To handle the sheer number of individual calculations that are needed in such studies, workflow management packages for atomistic simulations have been developed for a rapidly growing user base. These packages are predominantly designed to handle computationally heavy ab initio calculations, usually with a focus on data provenance and reproducibility. However, in related simulation communities, e.g., the developers of machine learning interatomic potentials (MLIPs), the computational requirements are somewhat different: the types, sizes, and numbers of computational tasks are more diverse and, therefore, require additional ways of parallelization and local or remote execution for optimal efficiency. In this work, we present the atomistic simulation and MLIP fitting workflow management package wfl and Python remote execution package ExPyRe to meet these requirements. With wfl and ExPyRe, versatile atomic simulation environment based workflows that perform diverse procedures can be written. This capability is based on a low-level developer-oriented framework, which can be utilized to construct high level functionality for user-friendly programs. Such high level capabilities to automate machine learning interatomic potential fitting procedures are already incorporated in wfl, which we use to showcase its capabilities in this work. We believe that wfl fills an important niche in several growing simulation communities and will aid the development of efficient custom computational tasks.

Funder

Engineering and Physical Sciences Research Council

EPSRC Center for Doctoral Training in Automated Chemical Synthesis Enabled by Digital Molecular Technologies

U.S. Naval Research Laboratory

Horizon 2020 Framework Program

U.S. DOD High Performance Computing Modernization Program Office

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3