Affiliation:
1. Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong , Shatin, New Territories 999077, Hong Kong, China
Abstract
Aqueous manganese (Mn)-based batteries are promising candidates for grid-scale energy storage due to their low-cost, high reversibility, and intrinsic safety. However, their further development is impeded by controversial reaction mechanisms and low energy density with unsatisfactory cycling stability. Here, we summarized various types of emerging aqueous Mn-based batteries based on the active redox couples, including liquid–solid deposition/dissolution reactions of Mn0/Mn2+ and Mn2+/MnO2, liquid–liquid conversion reactions of Mn2+/Mn3+ and MnO42−/MnO4−, and solid–solid intercalation reaction of XMnOy/MnOy (X: cations) with manganese oxide as the host materials. A critical review of the fundamental understanding of their physicochemical properties in each reaction, scientific challenges, and improvement strategies is presented. Finally, perspectives on aqueous Mn-based batteries design for future commercialization are highlighted.
Funder
Research Grants Council, University Grants Committee
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献